

8-bit
Microcontrollers

Application Note

Rev. 8071A-AVR-02/08

AVR1001: Getting Started With the XMEGA
Event System

Features
• Flexible routing of peripheral events

- 8 configurable event channels
- Signal filtering

• Ability to control peripherals independent of CPU
• Quadrature decoding

1 Introduction
The XMEGA™ event system is a set of features that allows peripherals to interact
without intervention from the CPU. Several peripheral modules can generate
events, often on the same conditions as interrupt requests. These events are
routed through the event routing system to the event users, where certain actions
can be triggered by the event. The CPU is not involved in this process, except in
the setup phase. As an example, it is possible to trigger a Timer/Counter input
capture when a user presses a button, or start an analog to digital conversion at
the overflow of a timer/counter. When fully utilizing the power of the event system,
it is possible to configure the chip to do complex operations, with very little
intervention from the CPU, saving both valuable program memory and execution
time.

2 AVR1001
8071A-AVR-02/08

2 Event System Overview
The event system can be divided into three distinct parts:

• Event generators, with one or more event sources
• The event routing network
• Event users

This chapter will explain the details of how these parts interact.

2.1 What is an Event?
An event, as used in this document, is an indication that a change of state within a
peripheral has occurred. A peripheral capable of generating events is called an event
generator. One event generator may be able to generate events on several changes
within the peripheral. Each of these is an individual event source. As an example, a
Timer/Counter module is an event generator with several event sources, since it can
generate events on overflow, error and compare/capture.

2.2 Event Types
Two types of events exist in the XMEGA event system, signaling events and data
events. A signaling event does not contain any information except the fact that a
change has occurred. A data event contains additional information about the change
of state. The encoding of a data event is determined by the event source.

Since data events are only used in a few peripherals, they are not covered in detail
until chapter 3. In the rest of this document, the word “event” will be used when
referring to signaling events, except in situations where there is a need to distinguish
between the two.

2.3 Event Generators
An event generator is a peripheral module having one or more event sources. There
is generally a strong correlation between the available event sources and the
available interrupt and DMA trigger sources belonging to a peripheral module. An
event generator is feeding all its event sources to the event routing system, and is not
aware of which event sources is being used by other modules.

2.4 The Event Routing Network
The Event Routing Network handles the routing of events from the event generator to
the event user. The Event Routing Network consists of 8 equal event channels. Each
channel consists of a multiplexer (controlled by the CHnMUX register) and a control
and filtering logic (controlled by the CHnCTRL register), where n is the channel
number.

Every event source from every event generator is connected to the inputs of each of
the eight multiplexers. This means that each event channel can be connected to any
event source. Several event channels can also choose to relay the same event
source.

The filtering and special functions of the event channels are covered in chapter 3.

 AVR1001

 3

8071A-AVR-02/08

2.5 Event Users
An event user is a peripheral module that can make use of an event to trigger an
action, referred to as an event action. An event user selects the event source to react
to by selecting an event channel. The actual event source is determined by the
multiplexer setting in the selected event channel.

Event users can also be event generators. For example Timer/Counter modules have
several event sources, and can also use an event from another peripheral module to
trigger an input capture.

2.6 Event Timing
An event usually lasts for one clock cycle. Some event sources are able to generate
events continuously on some conditions, but this is not covered in detail here.

When an event is generated, it takes up to two clock cycles before the event action is
triggered. It takes up to one clock cycle from the event has occurred until it is
registered by the event routing network, and then another clock cycle to propagate
the event to the event user.

Since it will never take more than two clock cycles for an event to trigger an event
action, the event system provides more deterministic timing than using interrupts.

2.7 Manual Event Generation
It is possible to generate events either from software or using the on-chip debugging
system. The generated events are injected directly in the event channels. The event
channel does not need to have an event source associated with it to use the manual
event generation possibilities. If an event source is associated with the event channel,
the manually generated event has priority and will override the peripheral event.

Two registers are used for manual event generation, STROBE and DATA. The event
generation is triggered by a write to the STROBE register. When generating signaling
events, only the STROBE register is needed. When generating data events, both
STROBE and DATA must be used and STROBE must be written after DATA.

The STROBE and DATA registers contain one bit for each event channel. Bit n
corresponds to event channel n. It is possible to generate events on several channels
at the same time by writing to several channels at once.

Table 2-1 shows the mapping between the value written to the STROBE and DATA
register, and the generated event. Notice that only Data Event 02 and Data Event 03
will result in an event that is recognized by an event user that expects a signaling
event. Data events are covered more in detail in chapter 3.

Table 2-1. Event encoding
STROBE DATA Data Event User Signaling Event User

0 0 No Event No Event

0 1 Data Event 01 No Event

1 0 Data Event 02 Signaling Event

1 1 Data Event 03 Signaling Event

4 AVR1001
8071A-AVR-02/08

2.7.1 Manually Generating Signaling Events

When generating signaling events, only the STROBE register needs to be written. For
example, writing 0x05 to the STROBE register will generate a signaling event on
channels 0 and 2 simultaneously. When the events have been issued, the STROBE
register as well as the DATA register will be automatically cleared.

2.7.2 Manually Generating Data Events

When generating data events, the DATA register must be written first, followed by the
STROBE register. The events will not be generated before the STROBE register is
written. When the event(s) have been issued, the DATA and STROBE registers are
automatically cleared. For example, writing 0x05 to the DATA register, then writing
0x01 to the STROBE register will cause a Data Event 03 to be generated on channel
0, while Data Event 01 will be generated on channel 2. Notice that an event user
listening for signaling events will recognize an event on channel 0, but not on channel
2.

2.8 Events and Sleep Modes
The event system is operative in Active and Idle mode. In all other sleep modes,
peripheral modules will not be able to communicate using the event system.

3 Advanced Usage
In addition to relaying information about changes in peripherals, the event system has
built-in functionality to handle advanced tasks such as filtering and quadrature
decoding. These functions need special handling in the event channels, controlled by
the CHnCTRL register, where n is the channel number.

3.1 Filtering
Each event channel has an associated digital filter, controlled by the DIGFILT[2:0]
field in the CHnCTRL register. The input on the multiplexer for the event channel
must be logic high for (DIGFILT + 1) clock cycles before an event is signaled through
the event channel.

The digital filter is typically used when an I/O port pin is used to produce events, to
prevent multiple consecutive events caused by switch bouncing or electric noise.

3.2 Quadrature Decoding
The event system has extensions that make it possible to use a Timer/Counter as a
quadrature decoder. Quadrature encoders are commonly used as position sensors in
motor application, but are also found in other rotary sensors, such as the ball tracker
in computer mice. The application note AVR1600 covers the setup and use of the
quadrature decoder in greater detail.

4 Examples
This chapter lists a range of useful ways to use the event system. Each example has
instructions on how to set up each part of the system. Additional and more detailed
examples can be found in application notes for the specific event users.

 AVR1001

 5

8071A-AVR-02/08

4.1 Input Capture
Any event source can be used to trigger an input capture on one of the Timer/Counter
modules. This can be used to timestamp events.

4.1.1 Configuration

This example shows how to configure TCC0 for input capture, triggered by a change
on the input of the I/O port pin PD0.

1. Configure TCC0 with the desired frequency and period.
2. Configure event channel 0 to use the PD0 event as event channel multiplexer

input.
3. Select event channel 0 as event source for TCC0.
4. Set event action for the TCC0 to “Input capture”.
5. Enable Compare or Capture Channel A.
6. Configure PD0 as input, and sense both edges.

TCC0 will now perform an input capture every time there is a logic change on the
input of PD0.

4.2 Sweep of 4 ADC Channels on Timer/Counter Overflow
The ADC can be configured to do a sweep of four channels on any event. In this
example, a Timer/Counter overflow event is used. This can be very useful when the
Timer/Counter is used for PWM generation, as the ADC sampling can be
synchronized to the PWM.

4.2.1 Configuration

This example shows how to configure a sweep of the four virtual channels of ADCA
on an overflow of TCC0, using event channel 0.

1. Configure TCC0 with the desired frequency and period.
2. Select the TCC0 overflow event as an event source for event channel 0.
3. Configure ADCA for a four-channel sweep.
4. Configure ADCA to start sweep on event, using event channel 0.

4.3 32-bit Timer/Counter with 32-bit Input Capture
Sometimes, it is beneficial to have a Timer/Counter with a resolution of more than 16
bits. The event system makes it possible to cascade two 16-bit Timer/Counters and
use them as one 32-bit Timer/Counter, with input capture support.

For more detailed information about using the Timer/Counters in 32-bit mode, please
see the application note AVR1306.

4.3.1 Configuration

This example shows how to configure TCC0 and TCC1 as one 32-bit Timer/Counter
with input capture channel A triggered by a logic change on PD0, routed through
event channel 1. Event channel 0 is used for overflow propagation.

1. Configure PD0 as input, sense on both edges.
2. Select TCC0 overflow event as event multiplexer input for event channel 0.

6 AVR1001
8071A-AVR-02/08

3. Select PD0 as event multiplexer input for event channel 1.
4. Select event channel 0 as clock source for TCC1.
5. Set EVACT in CTRLD to input capture as event action for both TCC0 and TCC1.
6. Set EVSEL bits in CTRLD to event channel 1 for both TCC0 and TCC1.
7. Set the EVDLY bit in TCC1.CTRLD to delay the event to the high word TC.
8. Enable input capture channel A for both TCC0 and TCC1.
9. Select system clock as clock source for TCC0.

A change in logic level on PD0 will now trigger a 32-bit input capture on channel A of
TCC0 and TCC1.

4.4 Event Counting
It is possible to use an event channel as a clock source for a Timer/Counter. This can
be used to count the number of events on an event channel.

4.4.1 Configuration

In this example, TCC0 will be used to count the number of times a button connected
to PD0 has been pressed.

1. Configure PD0 to trigger on rising or falling edge.
2. Select PD0 as event source for event channel 0.
3. Set the digital filter for event channel 0 to the highest possible value.
4. Configure event channel 0 as the clock source for TCC0.

TCC0 will now count the number of times the button connected to PD0 has been
pressed.

4.5 Sample Rate Distribution
An event channel can be set up to function as a sample rate distribution channel.
Many control systems need to sample and output data at regular intervals, called the
sample rate. Using one Timer/Counter as a sample rate generator, it is possible to
distribute the overflow and/or compare match events from the Timer/Counter to all
ADCs, DACs, PWMs and other peripheral modules that need to perform actions at
regular intervals.

5 Driver/Example Implementation
The included driver has functions that can be used to configure the Event system.
The driver is written in ANSI® C, and should compile on all compilers with Xmega
support.

Note that this driver is not written with high performance in mind. It is designed as a
library to get started with the Xmega Event system and an easy-to-use framework for
rapid prototyping. For time and code space critical application development, consider
replacing function calls with macros or direct access to registers.

5.1 Files
The source code package consists of the following files:

 AVR1001

 7

8071A-AVR-02/08

• event_system_driver.c – Event system driver source file
• event_system_driver.h – Event system driver header file
• event_system_example.c – Examples of using the event system

5.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

http://www.doxygen.org/

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8071A-AVR-02/08

	1 Introduction
	2 Event System Overview
	2.1 What is an Event?
	2.2 Event Types
	2.3 Event Generators
	2.4 The Event Routing Network
	2.5 Event Users
	2.6 Event Timing
	2.7 Manual Event Generation
	2.7.1 Manually Generating Signaling Events
	2.7.2 Manually Generating Data Events

	2.8 Events and Sleep Modes

	3 Advanced Usage
	3.1 Filtering
	3.2 Quadrature Decoding

	4 Examples
	4.1 Input Capture
	4.1.1 Configuration

	4.2 Sweep of 4 ADC Channels on Timer/Counter Overflow
	4.2.1 Configuration

	4.3 32-bit Timer/Counter with 32-bit Input Capture
	4.3.1 Configuration

	4.4 Event Counting
	4.4.1 Configuration

	4.5 Sample Rate Distribution

	5 Driver/Example Implementation
	5.1 Files
	5.2 Doxygen Documentation

